Zuid-korea febr. 2013
http://cns.miis.edu/opapers/pdfs/130301_korean_alternatives_report.pdf
The Bigger Picture:
Rethinking Spent Fuel Management in South Korea
Low and intermediate-level waste is stored at the subsurface Gyeongju LILW repository at a depth of 80 meters. Korea dumped low-level waste in the Sea of Japan 5 times from 1968-1972.(*01) High-level waste is stored at the reactor sites, pending construction of a centralized interim storage facility (possibly by 2016). No date for operation of a final disposal facility has been established, although long-term, deep geological disposal is envisaged. Whether this is for used fuel as such or reprocessing wastes depends on national policy and will be decided later.(*02)
The Atomic Energy Act of 1988 established a ‘polluter pays’ principle under which nuclear power plant operators paid a fee into a national Nuclear Waste Management Fund. A revised waste program was drawn up by the Nuclear Environment Technology Institute and approved by the Atomic Energy Commission (AEC) in 1998.(*03)
South Korea’s key national laws relating to spent fuel and radioactive waste management are the Atomic Energy Act (AEA) and the Radioactive Waste Management Act (RWMA). The AEA provides for safety regulations and licensing for construction and operation of radioactive-waste disposal facilities. The RWMA, which was announced in 2008, and enacted in March 2010, established the Korea Radioactive Waste Management Corporation (KRMC) and the Radioactive Waste Management Fund in which KHNP, the nuclear utility company, annually deposits funds for decommissioning its nuclear power plants, disposing of their LILW, and managing their spent fuel.(*04) KHNP now contributes a fee of 900,000 won (US$ 705) per kilogram of used fuel.(*05)
Reprocessing, either domestic or overseas, is not possible under constraints imposed by the country’s cooperation agreement with the USA.(*06) Reprocessing will be central at the renewal negotiations of the agreement in 2014. KHNP has considered offshore reprocessing to be too expensive, and recent figures based on Japanese contracts with Areva in France support this view, largely due to transport costs. (*07)
Low and intermediate level waste
South Korea’s attempts to site a central interim spent-fuel storage facility and repository for low and intermediate level waste (LILW) began in 1986. During the following decades, a number of failed attempts to acquire sites to host such facilities, due to fierce local opposition (*08) despite steadily growing incentive offers, (*09) were made. In December 2004, therefore, the AEC decided to pursue separate sites for the LILW repository and the central interim spent-fuel storage facility, starting with the LILW site, which was seen as politically easier. In March 2005, a Special Act on Support for Areas Hosting Low and Intermediate Level Radioactive Waste Disposal Facility was passed that guaranteed a local government hosting the national LILW facility an exemption from hosting a spent-fuel storage facility. The central government required a local referendum on hosting the facility and offered more incentives.
Success was finally achieved. Four cities competed to host the facility and Gyeongju City won after 89.5 percent of its voters approved hosting the site in November 2005. (*10) Construction started in April 2008 and in December 2010 KRWM commenced operation of the facility, accepting the first 1000 drums of wastes, which will be held in outdoor storage until the underground repository itself is commissioned in 2012.(*11)
SF-storage, temporarily or interim?
Dry storage for spent fuel has already been built at the Wolsong site, and more is being built there. Some argue that this is illegal because the national low- and intermediate-level waste repository is adjacent to the Wolsong nuclear power plant and, according to the 2005 Special Act on Support for Areas Hosting Low and Intermediate Level Radioactive Waste Disposal Facility, the same community cannot be required to host both the national LILW repository and interim spent fuel storage facilities. The KRMC argues, however, that the on-site dry storage facilities at Wolsong are “temporary,” not the “interim” storage that is banned by the special Act.
A major reason for South Korea’s political failures in siting a central spent-fuel storage site was that its early site-selection process did not include consultation with local communities. Instead, the central government selected sites based on its own assessments, met strong opposition from the proposed host region, and gave up. (*12)
In April 2007, after the success in siting the LILW repository, a task force was established to design a process to achieve a public consensus on spent fuel management. Based on the task force’s report, in July 2009, the Ministry of Knowledge Economy (MKE) established a committee to manage the process. A month later, however, the process was suspended and MKE announced that a legal framework and a solicitation of expert opinion were required first. An expert group composed of members of South Korea’s nuclear establishment was instructed to carry out a year-long research project during 2010 as a basis for the public consensus process.(*13)
If it is to be credible, however, such a public consensus process for spent fuel management will have to be open and transparent and involve local communities and independent experts. Whether or not the public consensus process will in fact be finally launched remains to be seen.
KURT
The R&D program on the disposal technology of high-level radioactive waste was initiated in 1997. After 10 years into the research program, a reference disposal system called the Korea Reference System (KRS) was formulated in 2006 on the basis of the results of the R&D program, which included performance and safety assessment, and studies on the geo-environmental conditions in Korea, an engineered barrier system, and the migration of radionuclides.
For the validation of the KRS, a project for constructing a generic underground research tunnel in a crystalline rock called the Korea Underground Research Tunnel (KURT) started in 2003. Following the site characterization study, the tunnel design, and the construction licensing, the construction of the KURT located at the KAERI site started in May 2005. Controlled drill and blasting techniques were applied to excavate a 6m wide, 6m high and 255m long horseshoe-shaped tunnel with a 10% downward slope. After the completion of this construction of the KURT in November 2006, various in-situ tests
are being carried out for the validation of HLW disposal techniques. (*14) The third phase of R&D study ended in February 2007 and phase four is underway. The Korean reference disposal system to accommodate all kinds of wastes from the advanced fuel cycle will be developed. And key technologies developed in third phase will be verified.(*15)
The KURT facility will not need to use radioactive sources to validate HLW approaches which are strictly prohibited by law. Rather, the facility will conduct a series of experiments to investigate “groundwater flow and rock mass characteristics” which with the participation of the local population could help to build trust.(*16)
Sources
*01- IAEA: Inventory of radioactive waste disposals at sea, IAEA-Tecdoc-1105, August 1999, p.40
*02- OECD: Radioactive waste management in Republic of Korea, 2010, p.10
*03- World Nuclear Association,Nuclear Power in South Korea, March 2012
*04- OECD, 2010, p.
*05- World Nuclear Association, March 2012
*06- South Korea’s nuclear energy development has been made possible by the ROK-U.S. Atomic Energy Agreement signed in 1972. The United States provided nuclear technologies and materials necessary for the peaceful use of nuclear energy; in return,
South Korea was specifically prohibited from proliferation-related activities such as the reprocessing of spent fuel and uranium enrichment under the terms of the agreement. After three decades of successful bilateral nuclear cooperation, the two governments
are due to renew the accord by 2014. See: Seongho Sheen: Nuclear Sovereignty versus Nuclear Security: Renewing the ROK-U.S. Atomic Energy Agreement, in The Korean Journal of Defense Analysis, Vol. 23, No. 2, June 2011, 273–288
*07- Nuclear Fuel: Reprocessing cost might exceed KHNP’s spent fuel management fees, 13 July 2009, p. 1
*08- see for instance the case of Buan; Nuclear Monitor 591: Massive actions against proposed South Korean waste dump, 22 August 2003, p.5
*09- Seong-Kyung Cho and Jooho Whang, “Status and Challenges of Nuclear Power Program and Reflections of Radioactive Waste Management Policy in Korea,” 2009 Advanced Summer School of Radioactive Waste Disposal with Social-Scientific Literacy, Berkeley, CA, 3 — 10 August 2009
*10- Korea Herald: Gyeongju wins vote for nuclear dump, 3 November 2005
*11- World Nuclear Association, March 2012
*12- Seong-Kyung Cho and Jooho Whang, August 2009
*13- This is based on several South Korean news items in 2009, quoted in: IPFM,
Managing spent fuel from nuclear power reactors, 2011, p. 68
*14- Republic of Korea: Korean Third National Report under the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, October 2008, p.91
*15- OECD, 2010, p.12
*16- Miles Pomper, Ferenc Dalnoki-Veress, Stephanie Lieggi, and Lawrence Scheinman:
Nuclear Power and Spent Fuel in East Asia: Balancing Energy, Politics and Nonproliferation, Asia-Pacific Journal: 21 June 2010